Nonsmooth Newton Methods for Set-Valued Saddle Point Problems

نویسندگان

  • Carsten Gräser
  • Ralf Kornhuber
چکیده

We present a new class of iterative schemes for large scale set– valued saddle point problems as arising, e.g., from optimization problems in the presence of linear and inequality constraints. Our algorithms can be either regarded as nonsmooth Newton–type methods for the nonlinear Schur complement or as Uzawa–type iterations with active set preconditioners. Numerical experiments with a control constrained optimal control problem and a discretized Cahn–Hilliard equation with obstacle potential illustrate the reliability and efficiency of the new approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

Nonsmooth interval-valued optimization and saddle-point optimality criteria

In this article, we focus our attention on a nonsmooth interval-valued optimization problem and establish sufficient optimality conditions for a feasible solution to be a LU optimal solution under the invexity assumption. Appropriate duality theorems for Wolfe and Mond-Weir type duals are presented in order to relate the LU optimal solution of primal and dual programs. Moreover, saddle-point ty...

متن کامل

Global and Superlinear Convergence of Inexact Uzawa Methods for Saddle Point Problems with Nondiierentiable Mappings

This paper investigates inexact Uzawa methods for nonlinear saddle point problems. We prove that the inexact Uzawa method converges globally and superlinearly even if the derivative of the nonlinear mapping does not exist. We show that the Newton-type decomposition method for saddle point problems is a special case of a Newton-Uzawa method. We discuss applications of inexact Uzawa methods to se...

متن کامل

ϵ-Henig Saddle Points and Duality of Set-Valued Optimization Problems in Real Linear Spaces

We study Ε-Henig saddle points and duality of set-valued optimization problems in the setting of real linear spaces. Firstly, an equivalent characterization of Ε-Henig saddle point of the Lagrangian set-valued map is obtained. Secondly, under the assumption of the generalized cone subconvexlikeness of set-valued maps, the relationship between the Ε-Henig saddle point of the Lagrangian set-value...

متن کامل

Solving Variational Inequality Problems via Smoothing-Nonsmooth Reformulations

It has long been known that variational inequality problems can be reformulated as nonsmooth equations. Recently, locally high-order convergent Newton methods for nonsmooth equations have been well established via the concept of semismoothness. When the constraint set of the variational inequality problem is a rectangle, several locally convergent Newton methods for the reformulated nonsmooth e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2009